- spac.visualization.histogram(adata, feature=None, annotation=None, layer=None, group_by=None, together=False, ax=None, x_log_scale=False, y_log_scale=False, **kwargs)[source]
Plot the histogram of cells based on a specific feature from adata.X or annotation from adata.obs.
- Parameters:
adata (anndata.AnnData) – The AnnData object.
feature (str, optional) – Name of continuous feature from adata.X to plot its histogram.
annotation (str, optional) – Name of the annotation from adata.obs to plot its histogram.
layer (str, optional) – Name of the layer in adata.layers to plot its histogram.
group_by (str, default None) – Choose either to group the histogram by another column.
together (bool, default False) – If True, and if group_by != None, create one plot combining all groups. If False, create separate histograms for each group. The appearance of combined histograms can be controlled using the multiple and element parameters in **kwargs. To control how the histograms are normalized (e.g., to divide the histogram by the number of elements in every group), use the stat parameter in **kwargs. For example, set stat=”probability” to show the relative frequencies of each group.
ax (matplotlib.axes.Axes, optional) – An existing Axes object to draw the plot onto, optional.
x_log_scale (bool, default False) – If True, the data will be transformed using np.log1p before plotting, and the x-axis label will be adjusted accordingly.
y_log_scale (bool, default False) – If True, the y-axis will be set to log scale.
**kwargs –
Additional keyword arguments passed to seaborn histplot function. Key arguments include: - multiple: Determines how the subsets of data are displayed
- on the same axes. Options include:
- ”layer”: Draws each subset on top of the other
without adjustments.
”dodge”: Dodges bars for each subset side by side.
”stack”: Stacks bars for each subset on top of each other.
”fill”: Adjusts bar heights to fill the axes.
- element: Determines the visual representation of the bins.
- Options include:
”bars”: Displays the typical bar-style histogram (default).
”step”: Creates a step line plot without bars.
- ”poly”: Creates a polygon where the bottom edge represents
the x-axis and the top edge the histogram’s bins.
- log_scale: Determines if the data should be plotted on
a logarithmic scale.
- stat: Determines the statistical transformation to use on the data
- for the histogram. Options include:
”count”: Show the counts of observations in each bin.
”frequency”: Show the number of observations divided by the bin width.
- ”density”: Normalize such that the total area of the histogram
equals 1.
- ”probability”: Normalize such that each bar’s height reflects
the probability of observing that bin.
- bins: Specification of hist bins.
Can be a number (indicating the number of bins) or a list (indicating bin edges). For example, bins=10 will create 10 bins, while bins=[0, 1, 2, 3] will create bins [0,1), [1,2), [2,3]. If not provided, the binning will be determined automatically.
- Returns:
fig (matplotlib.figure.Figure) – The created figure for the plot.
axs (matplotlib.axes.Axes or list of Axes) – The Axes object(s) of the histogram plot(s). Returns a single Axes if only one plot is created, otherwise returns a list of Axes.